物联网app开发 Bulk RNA(豪迈转录组)多组互异基因分析函数(视频教程)

你的位置:物联网软件开发多少钱 > 物联网软件开发公司 > 物联网app开发 Bulk RNA(豪迈转录组)多组互异基因分析函数(视频教程)
物联网app开发 Bulk RNA(豪迈转录组)多组互异基因分析函数(视频教程)
发布日期:2024-11-06 04:38    点击次数:88
❞过节前仍是在更新。最近好几个小伙伴齐在用咱们之前的一个bulk RNA多组互异分析函数(重启之豪迈R转录组分析(3):写一个通用的Deseq2多组互异分析函数),有些小问题,大致说一些功能不完善。是以咱们此次进行了升级和优化。领先将bulk互异分析3大包DEseq2  edgeR  limma齐纳入进来了。第二,让您的分析愈加简便,无须惦记复杂的代码和分组诞生(许多本事还搞错谁vs谁)。第三, 岂论你的两组样本访佛数是否疏导,齐不错进行(无访佛样分内析莫得,主若是我合计你算法再优化,也撤销不了个体互异立时性)。第四,多组样本的分析!松懈化解!  投降跟着现在bulk的擢升和低廉化,咱们这个函数照旧很灵验的!竣工版函数及数据已发布微信VIP,请自行下载!视频邻接如下(复制到浏览器灵通):https://www.bilibili.com/video/BV1n2421A7oJ/?spm_id_from=333.999.0.0&vd_source=05b5479545ba945a8f5d7b2e7160ea34领先咱们看一下函数的参数,亦然很简易:

图片物联网app开发

然后咱们测试一下:领先是两组等访佛样本,很简便!

小程序开发
setwd('D:\\KS样式\\公众号著述\\Bulk多组互异基因分析函数')#一、两组分析(样本数相称)-------------------------------------------------------------------df1 <- read.csv("Two_group.csv", header = T, row.names = 1)colnames(df1)# [1] "Cancer1" "Cancer2" "Cancer3" "Health1" "Health2" "Health3"meta1 <- data.frame(Cancer=c("Cancer1" ,"Cancer2" ,"Cancer3"),                    Health=c("Health1", "Health2", "Health3"))deg1_Deseq2 <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df1,                                          meta = meta1,                                          methods = "DESeq2",                                          test = "Cancer",                                          control = "Health",                                          repNum1 = 3,                                          repNum2 = 3)deg1_edgeR <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df1,                                          meta = meta1,                                          methods = "edgeR",                                          test = "Cancer",                                          control = "Health",                                          repNum1 = 3,                                          repNum2 = 3)deg1_limma <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df1,                                         meta = meta1,                                         methods = "limma",                                         test = "Cancer",                                         control = "Health",                                         repNum1 = 3,                                         repNum2 = 3)

访佛数不等的两组样分内析亦然如斯,唯一诞生好test和control即可:

#二、两组分析(样本数不同)-------------------------------------------------------------------df4 <- read.csv("two_diff_group.csv", header = T, row.names = 1)colnames(df4)# [1] "HC_1"  "HC_2"  "HC_3"  "HC_4"  "PPC_1" "PPC_2" "PPC_3" "PPC_4" "PPC_5" "PPC_6"meta4 <- data.frame(HC=c("HC_1","HC_2","HC_3","HC_4","",""),                    PPC=c("PPC_1","PPC_2","PPC_3","PPC_4","PPC_5","PPC_6"))deg4_Deseq2 <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df4,                                          meta = meta4,                                          methods = "DESeq2",                                          test = "PPC",                                          control = "HC",                                          repNum1 = 6,                                          repNum2 = 4)deg4_edgeR <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df4,                                          meta = meta4,                                          methods = "edgeR",                                          test = "PPC",                                          control = "HC",                                          repNum1 = 6,                                          repNum2 = 4)deg4_limma <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df4,                                         meta = meta4,                                         methods = "limma",                                         test = "PPC",                                         control = "HC",                                         repNum1 = 6,                                         repNum2 = 4)

咱们不错对比下三种步地互异基因服从,发现确定不是十足同样,那是因为算法不同样,无须纠结。在咱们这个数据内部不错看出,DEseq2和edgeR的服从重合照旧挺多的。

#韦恩图deg4_Deseq2_sig <- deg4_Deseq2[which(abs(deg4_Deseq2$log2FoldChange)>0 & deg4_Deseq2$pvalue <=0.05),]deg4_edgeR_sig <- deg4_edgeR[which(abs(deg4_edgeR$logFC)>0 & deg4_edgeR$PValue <=0.05),]deg4_limma_sig <- deg4_limma[which(abs(deg4_limma$logFC)>0 & deg4_limma$P.Value <=0.05),]library(ggvenn)library(tidyverse)Venn_list <- list(deg4_Deseq2_sig=rownames(deg4_Deseq2_sig),                  deg4_edgeR_sig=rownames(deg4_edgeR_sig),                  deg4_limma_sig=rownames(deg4_limma_sig))#使用list_to_data_frame将list革新为data.framedata_veen = list_to_data_frame(Venn_list)ggvenn(Venn_list,       show_percentage = T,       show_elements = F,       text_size=3,       digits = 1,       set_name_size=4,       stroke_color = "grey30",       fill_color = c("#FF8C00","#4DAF4A","#B64E89"),       set_name_color = c("#FF8C00","#4DAF4A","#B64E89"))

图片

多组样本的分析就更简便了:大多诞生齐诞生好了。这里需要强调少量,那即是关于多组样本,物联网软件开发公司在进行meta诞生的本事,test组靠前,control靠后!

邱少波快乐8第2024182期八区奖号分析

0路号码分析:上期走势一般,出现7个:21、27、33、42、63、69、78,最近10期0路号码出现72个,走势总体较热,其中冷温热期数比为0:9:1,0路号码大小个数比为41:31,大号表现明显较热,0路号码奇偶比为34:38,偶数号码表现活跃,对比上期,本期看好0路号码个数增加,走势大热,参考9个:06、12、18、24、36、42、51、57、66。

#四、多组test------------------------------------------------------------------df3 <- read.csv("count_gene.csv", header = T, row.names = 1, check.names = F)colnames(df3)# [1] "Fbrain 1" "Fbrain 2" "Fbrain 3" "Fbrain 4" "Fhom 1"   "Fhom 2"   "Fhom 3"  # [8] "Mbrain 1" "Mbrain 2" "Mbrain 3" "Mbrain 4" "Mbrain 5" "Mhom 1"   "Mhom 2"  # [15] "Mhom 3"   "Mhom 4" meta3 <- data.frame(Mhom = c("Mhom 1","Mhom 2", "Mhom 3","Mhom 4",""),                    Fhom  = c("Fhom 1","Fhom 2","Fhom 3","",""),                    Mbrain=c("Mbrain 1","Mbrain 2","Mbrain 3","Mbrain 4","Mbrain 5"),                    Fbrain=c("Fbrain 1","Fbrain 2","Fbrain 3","Fbrain 4",""))deg3_Deseq2 <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df3,                                          meta = meta3,                                          methods = "DESeq2",                                          separator=" ")deg3_edgeR <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df3,                                         meta = meta3,                                         methods = "edgeR",                                         separator=" ")deg3_limma <- KS_bulkRNA_MultiGroup_DEGs(exprSet = df3,                                         meta = meta3,                                         methods = "limma",                                         separator=" ")

图片

本站仅提供存储干事,扫数实验均由用户发布,如发现存害或侵权实验,请点击举报。